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Abstract. Several testing criteria and tools have been proposed lately,

with the goal of selecting and evaluating test data sets. However, most

works focus only procedural and object-oriented programs and little has
been said about logic programming languages, such as Prolog. Some
works address the test of Prolog programs however, do not introduce

testing criterion and not offer coverage testing metrics. This work in-

vestigates the application of the Mutation Analysis criterion for testing
Prolog programs. In experiments of literature, this criterion has been
considered one of the most efficacious. A set of mutation operators for

this language is proposed, based on common mistakes made by the pro-

grammers using this paradigm. A tool, named Mut Prolog, is described.
This tool supports the proposed operators and eases the development of
Prolog programs. Results from an experiment, using Mut Prolog, show
the applicability of the proposed operators and allow comparison with
structural criteria.
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1 Introduction

In the software development process, software testing is one of the most impor-
tant activities for software quality assurance. However, the testing activity is

very expensive; the testing teams should be properly trained and in some cases,

adequate tools are not available. Because of this, some works introduced testing

techniques and criteria, with the goal of revealing a great number of faults with

minimal effort and costs.

Since to execute the program for all inputs of its domain, that is, to perform

an exhaustive testing is not always possible, the testing criteria were proposed
to help the tester in the task of selecting test data and/or of evaluating a given

test set T. A testing criterion is a predicate to be satisfied to consider the testing

activity ended [19]. It offers a metric, based on the coverage of certain elements,

named required elements. This metric is used to consider whether a program has

been tested enough. For example, functional criteria consider functional aspects

of the program. Structural criteria, such as control and data-flow based criteria

[19], consider internal aspects of the program or the specification to generate the
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Table 4. Strenght Results

Mut Prolog X All-Branches All-Branches X Mut Prolog
Program Test data Control Flow. Test Data

Coverage

MutProlog

Coverage

elem_rep 1 100% 1 79,8%
пит ар 1 100% 1 93,75%
ord sel 1 100% 1 92,5%

merge 3 100% 3 97,07%

Total 6 100% 6 90,25%

Table 5. Number of Faults Revealed by the Test Sets

Program Faults Revealed faults Revealed faults

T Tmp
elem_rep 5 4 (80%) 5 (100%)
num ap 5 5 (100%) 5 (100%)
ord sel 5 4 (100%) 4 (80%)
merge 5 5 (60%) 5 (100%)
Total 20 18 (90%) 19 (95%)

and equivalent mutants is lower than for traditional programs, because Prolog
programs are usually smaller.

When compared with structural testing, the results are similar to traditional

programs. Mutation testing requires a greater number of test data than the all-

branches criterion. The strength results show that to satisfy the mutant criterion

is harder than the structural criterion. We have a greater probability of satisfying
all-branches criterion if the mutant criterion was satisfied.

The results also indicate a greater efficacy but new studies should be con-
ducted. This is only a preliminary work. The set of operators herein introduced

should be better investigated. New operators should be proposed, mainly to help

the inter-clause testing. These operators can be proposed based on the concept

of interface mutation applied to integration testing [8].
In a second step, we intend to accomplish an experiment to investigate es-

sential operators for Prolog. Sets of operators could be established according to
some aspects and kind of application related to the program being tested. This
has been successfully done in conventional programs for decreasing costs.

Some improvements in MutProlog are necessary, such as, the development of
a graphical interface and mechanisms to help the tester in the identification of
equivalent mutants and in the automatic generation of test data.
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