
Applying Mutation Testing in Prolog Programs

Juliano R. Toaldo¹ and Silvia R. Vergilio¹

Federal University of Parana (UFPR), CP: 19081,
CEP: 81531-970, Curitiba - Brazil

jtoaldo@yahoo.com.br, silvia@inf.ufpr.br

a

Abstract. Several testing criteria and tools have been proposed lately,

with the goal of selecting and evaluating test data sets. However, most

works focus only procedural and object-oriented programs and little has
been said about logic programming languages, such as Prolog. Some
works address the test of Prolog programs however, do not introduce

testing criterion and not offer coverage testing metrics. This work in-

vestigates the application of the Mutation Analysis criterion for testing
Prolog programs. In experiments of literature, this criterion has been
considered one of the most efficacious. A set of mutation operators for

this language is proposed, based on common mistakes made by the pro-

grammers using this paradigm. A tool, named Mut Prolog, is described.
This tool supports the proposed operators and eases the development of
Prolog programs. Results from an experiment, using Mut Prolog, show
the applicability of the proposed operators and allow comparison with
structural criteria.

Keywords: testing criteria, logic programming, mutation testing.

1 Introduction

In the software development process, software testing is one of the most impor-
tant activities for software quality assurance. However, the testing activity is

very expensive; the testing teams should be properly trained and in some cases,

adequate tools are not available. Because of this, some works introduced testing

techniques and criteria, with the goal of revealing a great number of faults with

minimal effort and costs.

Since to execute the program for all inputs of its domain, that is, to perform

an exhaustive testing is not always possible, the testing criteria were proposed
to help the tester in the task of selecting test data and/or of evaluating a given

test set T. A testing criterion is a predicate to be satisfied to consider the testing

activity ended [19]. It offers a metric, based on the coverage of certain elements,

named required elements. This metric is used to consider whether a program has

been tested enough. For example, functional criteria consider functional aspects

of the program. Structural criteria, such as control and data-flow based criteria

[19], consider internal aspects of the program or the specification to generate the

A. Gelbukh, C. Yáñez Márquez, O. Camacho Nieto (Eds.)

Advances in Artificial Intelligence and Computer Sciencе

Research on Computing Science 14, 2005, pp. 81-92





















Applying Mutation Testing in Prolog Programs 91

Table 4. Strenght Results

Mut Prolog X All-Branches All-Branches X Mut Prolog
Program Test data Control Flow. Test Data

Coverage

MutProlog

Coverage

elem_rep 1 100% 1 79,8%
пит ар 1 100% 1 93,75%
ord sel 1 100% 1 92,5%

merge 3 100% 3 97,07%

Total 6 100% 6 90,25%

Table 5. Number of Faults Revealed by the Test Sets

Program Faults Revealed faults Revealed faults

T Tmp
elem_rep 5 4 (80%) 5 (100%)
num ap 5 5 (100%) 5 (100%)
ord sel 5 4 (100%) 4 (80%)
merge 5 5 (60%) 5 (100%)
Total 20 18 (90%) 19 (95%)

and equivalent mutants is lower than for traditional programs, because Prolog
programs are usually smaller.

When compared with structural testing, the results are similar to traditional

programs. Mutation testing requires a greater number of test data than the all-

branches criterion. The strength results show that to satisfy the mutant criterion

is harder than the structural criterion. We have a greater probability of satisfying
all-branches criterion if the mutant criterion was satisfied.

The results also indicate a greater efficacy but new studies should be con-
ducted. This is only a preliminary work. The set of operators herein introduced

should be better investigated. New operators should be proposed, mainly to help

the inter-clause testing. These operators can be proposed based on the concept

of interface mutation applied to integration testing [8].
In a second step, we intend to accomplish an experiment to investigate es-

sential operators for Prolog. Sets of operators could be established according to
some aspects and kind of application related to the program being tested. This
has been successfully done in conventional programs for decreasing costs.

Some improvements in MutProlog are necessary, such as, the development of
a graphical interface and mechanisms to help the tester in the identification of
equivalent mutants and in the automatic generation of test data.

References

1. D. Baldwin and F. Sayward. Heuristics for Determining Equivalence of Program
Mutations. CT, Res.Rep. 276, Department of Computer Science - Yale University,
New Haven, 1979.

2. F. Bergadano and D. Gunetti. Inductive Logic Programming: From Machine Learn-

ing to Software Engineering. The MIT Press, 1996.



92 Toaldo J., Vergilio S.

3. P. Boeck and B. Charlier. Static type analysis of prolog procedures for ensur-

ing correctness. In International Workshop PLILP, pages 223-237. Spring-Verlag,
Lectures Notes in Computer Science, 456, 1990.

4. N. Choquet. Test data generation using a prolog with constraints. In Proc. of the
Workshop on Software Testing, pages 132-141. Computer Science Press, Banff
Canada, July 1986.

5. W.M. Craft. Detecting Equivalents Mutants Using Compiler Optimization. Master
Thesis, Department of Computer Science, Clemson University, Clemson-SC, 1989.

6. R.A. De Millo, D.C. Gwind, and K.N. King. An extented overview of the mothra
software testing environment. In Proc. of the Second Workshop on Software Test-

ing, Verification and Analysis, pages 142-151. Computer Science Press, Banff
Canada, July 19-21 1988.

7. R.A. De Millo, R.J. Lipton, and F.G. Sayward. Hints on test data selection: Help
for the practicing programmer. IEEE Computer, Vol. C-11:34-41, April 1978.

8. M. E. Delamaro and et al. Integration testing using interface mutation. In VII
International Symposium of Software Reliability Engineering (ISSRE), pages 112-

121. IEEE Computer Society Press, New York, NY, November 1996.
9. M. E. Delamaro and J.C. Maldonado. A tool for the assesment fo test adequacy

for c programs. In Proceedings of the Conference on Performability in Computing

Systems, pages 79-95. East Brunswick, New Jersey, USA, July 1996.

10. R. Denney. Test case generation form prolog-based specifications. IEEE Software,

pages 49-57, March 1991.

11. M.C.F.P. Emer and S.R. Vergilio. Selection and evaluation of test data sets based

on genetic programming. Software Quality Journal, pages 167-186, June 2003.
12. F.G. Frankl and E.J. Weyuker. Data flow testing in the presence of unexecutable

paths. In Proceedings of the Workshop on Software Testing, pages 4-13. Computer
Science Press, Banff - Canada, July 1986.

13. M.M. Gorlick, C.F. Kesselman, D.A. Marotta, and S Parker. Mockingbird:
logical methodology for testing. Journal of Logic Programming, (8):95-119, 1990.

14. D. Hoffman and P. Strooper. Automated module testing in prolog. iEEE Trans-

actions on Software Engineering, 17(9):934-943, 1991.
15. G.B. Luo, B. Sarikaya, and M. Boyer. Control-flow based testing of prolog pro-

grams. pages 104-113, March 1992.

16. A.P Mathur and W.E. Wong. An empirical comparison of data flow and mutation

based test adequacy criteria. The Journal of Software Testing, Verification

Reliability, Vol. 4(1):9-31, March 1994.

17. L.M. Pereira. Rational debugging in logic programming. In Third International

Conference on Logic Programming, pages 203-210. Lectures Notes on Computer

Science, 1986.

18. L. Plumer. Termination proofs for logic programs. In Lectures Notes in Artificial

Intelligence. Spring-Verlag, 1990.

19. S. Rapps and E.J. Weyuker. Selecting software test data using data flow informa-

tion. IEEE Transactions on Software Engineering, SE-11(4):367-375, April 1985.

20. W.E. Wong. On Mutation and Data Flow. PhD Thesis, Department of Computer

Science, Purdue University, West Lafayette-IN, USA, December 1993.


