Applying Mutation Testing in Prolog Programs

Juliano R. Toaldo! and Silvia R. Vergilio?

Federal University of Parana (UFPR), CP: 19081,
CEP: 81531-970, Curitiba - Brazil
jtoaldo@yahoo.com.br, silvia@inf.ufpr.br

Abstract. Several testing criteria and tools have been proposed lately,
with the goal of selecting and evaluating test data sets. However, most
works focus only procedural and object-oriented programs and little has
been said about logic programming languages, such as Prolog. Some
works address the test of Prolog programs however, do not introduce a
testing criterion and not offer coverage testing metrics. This work in-
vestigates the application of the Mutation Analysis criterion for testing
Prolog programs. In experiments of literature, this criterion has been
considered one of the most efficacious. A set of mutation operators for
this language is proposed, based on common mistakes made by the pro-
grammers using this paradigm. A tool, named MutProlog, is described.
This tool supports the proposed operators and eases the development of
Prolog programs. Results from an experiment, using MutProlog, show
the applicability of the proposed operators and allow comparison with
structural criteria.

Keywords: testing criteria, logic programming, mutation testing.

1 Introduction

In the software development process, software testing is one of the most impor-
tant activities for software quality assurance. However, the testing activity is
very expensive; the testing teams should be properly trained and in some cases,
adequate tools are not available. Because of this, some works introduced testing
techniques and criteria, with the goal of revealing a great number of faults with
minimal effort and costs.

Since to execute the program for all inputs of its domain, that is, to perform
an exhaustive testing is not always possible, the testing criteria were proposed
to help the tester in the task of selecting test data and/or of evaluating a given
test set T. A testing criterion is a predicate to be satisfied to consider the testing
activity ended [19). It offers a metric, based on the coverage of certain elements,
named required elements. This metric is used to consider whether a program has
been tested enough. For example, functional criteria consider functional aspects
of the program. Structural criteria, such as control and data-flow based criteria
[19], consider internal aspects of the program or the specification to generate the

© A. Gelbukh, C. Ydriez Mdrquez, O. Camacho Nieto (Eds.)
Advances in Artificial Intelligence and Computer Science
Research on Computing Science 14, 2005, pp. 81-92

82 Toaldo J., Vergilio S.

test data. Fault-based criteria derive test data to show the presence or absence of
typical faults in a program, based on common errors in the software development.

The different criteria are considered complementary because they can reveal
different kind of faults. However, some empirical studies show that the fault-
based criteria are the most efficacious to reveal faults [16,20].

In spite of this great number of testing criteria and supporting tools, most of
them focus conventional procedural and object-oriented paradigms. Few works
are dedicated to logic programming languages, such as Prolog.

The majority of the works about test of Prolog programs, generates test data
considering only functional aspects [4,10,13,14]. The work of Bergadano et al (2]
uses ILP (Inductive Logic Programming) and the works described in (3,17,18]
are related to debugging and detection of anomalies. These works do not extend
the testing criteria and not allow the use of coverage metrics. To overcome this
limitation, Luo et al [15] propose the extension of structural criteria for testing
Prolog programs. They propose a control-flow graph for Prolog and two criteria
based on this graph: all-branches, and all pairs branch-to-branch.

In a complementary way, our work investigates the use of fault-based testing
of Prolog programs, particularly the use of mutation testing [7]. Mutation Anal-
ysis (MA) is based on two assumptions [7]: 1) “competent programmer hypoth-
esis”, e.g. programmers do their programs very similar to the correct program,
according to a specification. When the users test a program, they use the cor-
rect program that they have in mind, and if the program P being tested is not
correct, there is a set of alternatives (mutants) for P that can include at least
one correct program; and 2) coupling effect: complex faults are usually revealed
by revealing simpler ones.

Mutation testing [7] consists basically of generating mutant programs for the
program P being tested. A mutant is represented by a single mutation in the
original program established by a mutation operator. All mutants are executed
using a given input test data set T. If a mutant M presents different results from
P it is said to be dead. In the last case, either there is no test data in T that
is capable to distinguish M from P, or M and P are equivalent. Our goal must
be to find a test data set able to kill all non-equivalent mutants. The mutation
score allows the adequacy evaluation of T.

The existence of equivalent mutants is a limitation to determine the mutation
score, because there is no algorithm to determine whether two programs com-
pute the same functions. Similar limitation is found when applying structural
criteria. Some paths required by these criteria are infeasible and they can not be
automatically determined. The identification of infeasible paths and equivalent
mutants are un-decidable questions [1,5,12].

In spite of the above limitations, we find in the literature tools that support
structural and fault-based criteria To allow the application of mutation testing,
a tool is fundamental. Proteum [9] and Mothra [6] are examples of tools that
implement Mutation Analysis, respectively for C and FORTRAN languages.

To permit the application of mutation testing in Prolog programs it is nec-
essary the existence of mutation operators for this language and a tool to make

Applying Mutation Testing in Prolog Programs 83

possible the automatic execution of the mutants and the evaluation of the test
data sets. With this goal in mind, this paper introduces a set of mutation op-
erators for Prolog and describes a tool, named MutProlog that supports the
proposed operators and the application of mutation testing in this context.

The work is organized as follows. Section 2 describes related works that
address the test of Prolog programs. Section 3 describes a fault model for Prolog
programs and, based on this model, introduces the set of mutation operators.
Section 4 shows functional aspects of MutProlog. Section 5 describes procedures
of use for MutProlog. Section 6 presents the main results of an experiment
conducted for evaluation of the introduced operators. Section 7 concludes the

paper.

2 Related Works:

In the last decades, many works addressed the testing activity. Several testing
criteria and tools were proposed to easy the test. However, most of them focus
only procedural and object-oriented languages. Few works explore these criteria
in the logic or functional programming languages.

The works described in [4,10,13,14] generate test cases based on functional
aspects of the specification. Other works are related to debugging and detec-
tion of anomalies [3,17,18]. The work of Bergadano et al [2] uses ILP (Induc-
tive Logic Programming) for generating the test data without offers a coverage
metric. Emer and Vergilio proposes the use of Genetic Programming [11] for
generating mutant programs. They comment that the approach can be used for
any paradigm, however it is necessary a tool based on genetic programming for
evolving complete programs. The authors only explore the test of C programs.

Luo et al [15) explore the use of structural criteria for testing Prolog pro-
grams. They propose a control-flow graph for Prolog and two criteria based on
the graph: all-branches, and all pairs branch-to-branch. To satisfy these criteria,
it is necessary to execute the program with test data that exercise paths in the
graph. The paths must to include all the branches in the graph and all pairs of
branches. In some cases, the required elements (branches or pair of branches)
can be infeasible, if all the paths that exercise them are also infeasible. The tool
TGT (Test Data Generation Tool) was implemented to validate the structural

criteria.

The work of Luo et al is the most similar to ours. In next section, we also
explore the use of criteria for Prolog programs. However, we propose the use of
Mutation Analysis, that is a fault-based criterion. The main motivation to do
this is that results from experiments reported in the literature [16,20] show that
this criterion is the most efficacious and we did not find any work that explores
these criteria in the mentioned context.

84 Toaldo J., Vergilio S.

3 Mutation Operators for Prolog

This section introduces a set of mutation operators for Prolog based on our
experience as programmers and on the characteristics of Prolog programs [15).

— the data structures are recursive lists, recursion is very used in Prolog.

— the unification of sub-goals in Prolog can proceed on two directions; the
existence of backtracking is a very important characteristic.

— there are not pre-defined types for the variables, they match with different
kind of variables, there is the anonymous variable.

— there are no routines, a set of clauses is used, and the concept of unit testing
needs to be redefined.

These characteristics are related to the main mistakes made by the program-
mers that most frequently do not have the explicit control. Considering these
aspects, a classification for the main non syntactical faults of the programs
established and a mutation operator for each class is introduced. They were clas-
sified in four groups. Table 1 presents a description and examples showing the
transformation of the program caused by each operator in each group.

1. clause mutation: each Prolog rule, finalized with a “.” is considered a clause.
This group includes changes in conjunction and disjunction, operations with
cut (“!”), changes in predicates, etc. The changes in predicates happens only
in adjacent predicates, because we are considering the hypothesis of the
competent programmer [7]. However, changes in operations with cut happens
belong all the programs; errors using cut are much more frequent.

2. operator mutations: differently of conventional languages there are no many
operators in Prolog. We include the arithmetic and relational ones. The idea
is to change them by similar operators.

3. variable mutation: two types of variable are considered: anonymous or not.
A variable is changed by other one in the same clause, independently of its
type.

4. constant mutation: constants are changed by other constants or variables
any type in the same clause.

The introduced operators are capable of revealing the faults that they de-
scribe. However, based on the coupling effect assumption (7], complex faults are
combination of simpler faults and can be detected when simple faults are re-
vealed. We illustrate this fact with the program merge [2] (Figure 1a) and its
incorrect version with only four clauses (Figure 1b). The incorrect program does
not eliminate duplicates. A test set satisfying all-branches criterion may not re-
veal the fault. However, a test data selected to kill the mutants generated by the
operator “Relational Operator” necessarily reveals the fault.

Applying Mutation Testing in Prolog Programs

Table 1. Mutation Operators

85

Opecrator [Description |Original Program |[Example of Mutant
Group 1: Clause Mutations

clete remove predicate P [writel([]). writel([]).

Predicate in clause C writel([H|T}) :- write(H),nl, writel({H|T]) :- nl,
writel(T). writel(T).
Swap change the order likes(ana,X) :- toy(X), likes(ana,X) :- plays(ana,X),
Predicate in adjacent plays(ana,X). toy(X).
predicates

Conjunction |change conjunction [subsct(S,[H|T]) :- subsct(R,T), |subsct(S,[H[T]) :- subsct(R,T),
by of predicates (5=R , S=[H|R]). (S=R ; S=[H|R]).
Disjunction |by disjunction subset([].({])- subset([},(]).
Replacement
Disjunction [change disjunction least_num(X,[H|T]) :- Icast_num(X,[H[T]) :-
by of predicates lcast.num(Y,T), least_ num(Y,T),
Conjunction |by conjunction (H=<Y,X=H H>Y,X=Y). (H=<Y,X=H;H>Y X=Y).

Replacement

Inscrt Cut

insert cut
between
predicates

bubblesort(L,L1) :-
swap(L,L2,0),
bubblesort(L2,L1).

bubble sort(L,L).

bubblesort(L,L1) :-
swap(L,L2,0),!,
bubblesort(L2,L1).

bubble sort(L,L).

Remove Cut

remove cut
opcrator

not(G) :- G\ fail.
not(G).

not(G) = G,fail.
not(G).

Permute Cut

change the
placc of a cut

insert(X,[H|T],[H|T1] :- ,X>H,
insert (X, T,T1).

insert(X,[H|T[,[H|T1] :- X>H,!,
insert(X,T,T1).

Group 2: Operator Mutation

Arithmetic |change an arithmetic [length([],0). length([},0).

Operator opcrator by other length([-|T],N) :- length([-|T],N) :-
Mutation arithmetic operator length(T,M),N is M+1. length(T,M),N is M*1.
Relational [change a relational fault(X) :- fault(X) :-

Operator operator by other non(respond(X,Y)),X\ == non(respond(X,Y)),X>Y.
Mutation relational operator

Group 3: Variable Mutation

Variable by
Variable

change a variable
in clause C
by other one in C

member(X,[T|.]).

member(X,[{T}) :- member(X,T).

member(X,[X].]).
member(X,[]T]) :- member(X,T).

Variable by
Anonymous
Variable

changc a variable
by an anonymous
variable

length(][],0).
length([H|T],N) :-
length(T,M),N is M+1.

length([],0).
length([-|T],N) :-
length(T,M),N is M+1.

Anonymous |change anonymous member (X, [X|]). member(X,[X|T]).
Variable variable in clause C |member(X,[{T]) :- member(X,T).|member(X,[{T]) :- member(X,T).
by Variable [by other variable in C

Group 4:Constant Mutation

Constant by

change a constant

length([],0).

length([],1).

Constant in clause C length([-|T],N) :=- length([-|T],N) :-

by other one length(T,M),N is M+1. length(T,M),N is M+1.
Constant by {change a constant likes(ana,josc). likes(ana,jose).
Anonymous |in clause C likes(josc,ana). likes(jose,.).
Variable by an anonymous

variable
Anonymous [change anonymous likes(ana,apple). likes(ana,apple).
Variable by |variable in clause C likes(paulo,.). likes(paulo,apple).
Constant by a constant in C
Constant by [change a constant append([[,L,L). append(L2,L,L).
Variable in clause C by nppend([H]Tl] L2,[H|T]) :- append({H|T1},L2,[H|T}) :-

a variable in C

append(T1,L2,T).

append(T1,L2,T).

Variable by
Constant

change a variable
in clause C by a
constant in C

nth(N,X,[X]|T]).
nth(N,X,[Y|T]) :-
nth(M,X,T),N is M+1.

nth{1,X,[XTT])-
nth(N,X,[Y|T]) =
nth(M,X,T),N is M+1.

86 Toaldo J., Vergilio S.

merge (A, []1,A). merge(A, [],A).

merge([(]1,B,B). merge([]),B,B).

..rs.([‘I]'[B'Rb]D{AIHJ) e A < B. .etse([‘lnﬂ.[BIRb].[A]H]) i= A=
merge(Ra, [BIRb] ,M). merge(Ra, [BIRb] ,M).

-orgo([AIR&],[BII(\:J.FE:I:g) := A =B, merge ([AIRal, [BIRb], (BIM]) :~ A>B,
merge(Ra,Rb,M). - .

merge([AIRal, [BIRb], (BIN]) := A > B, mezge (LARa) Rk, M)

merge([AIRa] ,Rb,M).

Fig. 1. Program merge a) Program original. b) Incorrect Version.
4 MutProlog

The complete automation of a testing criterion is impossible due to many testing
limitations. Considering these limitations, a tool, named MutProlog was devel-
oped to support the introduced operators and to allow the fault-based testing.
MutProlog was implemented in C language and operational system Linux. It has
four modules, illustrated in Figure 2 and described below.

Cenerate mutants: receives the source code in SWI Prolog and the configu-
ration file. It produces a directory(Mutants), that contains files and descriptions
for the transformations to be applied. All the clauses in the source code are
considered to generate the mutants individually. The configuration file contains
the percentage to be applied for each operator. For example, for program merye,
a configuration file from Figure 3 indicates a percentage of 50 to the operator
«Insert cut”. This means, if for a clause, 4 mutants can be generated applying

this operator, only 50% (2) are generated.

Generate scripts: generates a script for automatic execution of the mutants.
It is executed after the generation of the mutants. This module uses the param-
eters “input._variable” and “output_variable” given in the configuration file. For

example, merge has two input variables and only one output.

Ezecute mutants: this module is used in two cases. In the first one, the user
adds test data to the existent ones, and the source code is executed, its input and
tory. In the second case, the mutants are executed
and their outputs are compared with the original outputs. This module can be
executed many times, but only the alive and enabled mutants are executed.
To each mutant is associated to a status that can be: dead, alive, anomalous or
equivalent. Mutants that produce an execution error, such as division by zero, are
identificd as anomalous. Equivalent mutants produce the same original output
they are identified by the tester, because determining equivalence
decidable question [1,5]. The tester can also enable

outputs are saved in a direc

for all inputs;
between programs is an un-
or not a test data.

Evaluate mutants: the coverage is calculated using the formula below:

My(P,T)

AM(P) — AIIC(P),where -

MS(P,T) =

Applying Mutation Testing in Prolog Programs 87

— P: program under test;

— T: set of given test data;

— MS(P,T): mutation score;

— My4(P,T): number of dead mutants:;

— M(P): number of no anomalous generated mutants;
— M_(P): number of equivalent mutants.

According to the obtained coverage the tester decides to stop testing or to
add more test data to reach the desired coverage.

Source Code

Generate Mutants
Mutants >C0nﬁg. File

Generate Scripts

1

Scripts

Execute Mutants j=— T¢st Data

Results
Equivalent
Evaluate f— Mistants
Coverage

Fig. 2. Main Modules of MutProlog

input_variable=X

input_variable=Y

output_variable=Z
ClauseMutationPredicateDeletion=100
ClauseMutationSwapPredicates=100
ClauseMutationConjunctionByDisjunctionReplacement=100
ClauseMutationDisjunctionByConjunctionReplacement=100
ClauseMutationinsertCut=50
ClauseMutationRemoveCut=100
ClauseMutationPermuteCut=100
OperatorMutationArithmetic=100
OperatorMutationRelational=100
VariableMutationVariableByVariable=100
VariableMutationVariableByVariableAnonymous=100
VariableMutationVariableAnonymousCyVariable=100
ConstantMutationConstantByConstantReplacement=100
ConstantHutationConstantByVariableAnonymous=100
ConstantMutationVariableAnonymousByConatant=100
CoaastantMutationConstantByVariable=100
ConstantMutationVariableByConstant=100

Fig. 3. Configuration File for merge

88 Toaldo J., Vergilio S.

5 An Example of Use

As mentioned in Section 2, a testing criterion requires a set of elements to be
exercised by the test data. It can be used for selection or evaluation of test data
sets. In the case of MutProlog, the required elements are mutants programs that
should be dead by the test data.

5.1 Selection of Test Data

Suppose that we have to test a program P, but we do not have any test case set.
We can use Mutation Analysis and MutProlog as a guideline for the selection
test data. We should conduct the steps following steps:

1. Create a configuration file for the program.

2. Generate the mutants, using MutProlog.

3. For each generated mutant, generate a test data t to produce different out-

- puts executing P and the mutant. If such case does not exist, set the mutant
as equivalent.

4. Generate scripts using MutProlog and execute the mutants and P with t. The
test data is saved. If the output produced by P is not correct. The fault needs
to be removed and a regression testing is necessary. If the output produced
by a mutant is correct, it is very easy to correct the original program, since
P and the mutant differs only by a syntactical change.

5. If the outputs are really different, then the mutant is really dead. MutProlog
calculates the mutation score (or coverage).

6. If the desired score was obtained, stop testing. Otherwise, choose another
mutant and repeat Steps 3, 4 and 5.

At the end of the process we have tested P and now we have a set T of test
data generated using the Mutation Analysis criterion and a level of reliability.
given by the obtained coverage of T. Observe that if we have an initial set
Step 3 is not necessary, we can execute the mutants, check the outputs and
calculate the mutation score for all the test data in T. After this, we decide
continue or not, using MutProlog to improve T. This allows the combination
of other testing techniques with fault-based testing. The initial set of test data
could be generated using, for example, functional or structural techniques.

5.2 Evaluation of Test Data Sets

A testing criterion is also used to assess the quality of a test dataset. For example.
consider two test sets: T3 and T3, and the question: Which set is better? We
answer the question using MutProlog and the following steps:

1. Create a configuration file for the program.

2. Generate the mutants, using MutProlog.

3. Generate the scripts and execute the mutants and the original program using
T] and Tg.

Applying Mutation Testing in Prolog Programs 89

4. Calculate the scores and choose the test set with the greatest score.

This procedure can also be used to evaluate a particular test set T, to know
how good it is by considering the Mutation Analysis criterion.

6 Experiments

The experiment used four programs (elem_rep, num_ap, ord_sel e merge). The
goal of the experiment is a preliminary evaluation of the proposed operators.
The steps below were followed for every program:

1. generation of the configuration file and of the mutants. All the operators
were applied 100%.

2. generation of test data, execution of the mutants e evaluation of the results.

3. generation of additional test data to kill the alive mutants and determination

of the equivalent mutants.

4. execution of the mutants with the new test data.

5. repetition of the last two steps until all non-equivalent mutants are dead.
At the end of this step, we obtained MutProlog-adequate test sets (Trmp)s
composed only by test data that really killed a mutant. Table 2 shows the
obtained results. For program merge 186 mutants were generated, 171 died
with 4 test data and 15 are equivalents. T,,, for merge has 4 elements.

6. generation of the control-flow graphs for all programs and of the required
elements for the all-branches criterion.

7. identification of infeasible structural elements. Table 3 shows the required
and infeasible branches found.

8. evaluation of Ty,p. Table 4 shows the results of this step. The T'mp sets always
get a 100% coverage of all branches. That is, the T;,, sets are all-branches
adequate. We can observe in that table, that some test data of T, do not
contribute to cover any branch. Only 6 test data are necessary. Considering
only these necessary test data, we obtained T} sets, all-branches adequate

test sets, which are sub-sets of Tp,p.
9. submission of T} sets in MutProlog. The scores are in the last colunms of

Table 4.

The numbers in Table 2 are very small when compared with the ones obtained
in experiments with traditional programs. The number of generated mutants and
necessary test data are very small. This happens because Prolog programs are

smaller than C programs.
The percentage of equivalent mutants found, around 7%, is also low, showing

that the operators set generated a small number of equivalent mutants. This is
very important, because the manual determination of equivalent mutants spends
a lot of effort and time in the testing activity. We observe that there are no
infeasible branches.

To compare mutation testing and structural testing we used three factors,
usually used in works from the literature: cost, given by the number of test data,
strength, related to the difficulty of satisfying a criterion, given that another one
was satisfied; and efficacy, related to the number of revealed faults.

90 Toaldo J., Vergilio S.

Table 2. Generated and Equivalent Mutants and, Required Test data

Program|Generated| Equivalent |Test data
Mutants | Mutants | (Tmp)
elem_rep 314 21 (6,68%) 3
num_ap 208 18 (8,65%) 3
ord_sel 187 9 (4,81%) 3
merge 186 |15 (8,06%) 4
Total 895 63 (7,03%) 13

Table 3. Required and Infeasible Branches

Program|Required|Infeasible
elem_rep 17 0
num.ap 14 0
ord_sel 10 0
merge 26 0
Total 67 0

— Cost: the cost of mutation testing is 2 times greater than the cost of
structural criterion. In traditional programs this cost can be until 3 times
more, because of this, the obtained cost was smaller than we expected.

— Strength: The MutProlog adequate sets covered 100% of the required branche
However, 10% of the non-equivalent mutants were not killed by the
branches adequate sets. This can mean that the all-branches adequate
may be not include test data capable to reveal the faults described by

tors that generated those not dead mutants.

— Efficacy: With the goal of evaluating the efficacy of both criteria,
wrong versions for the programs, introducing one or more faults in each

program. Table 5 shows the total number of faults introduced in a random
way in each program. The wrong versions were executed by the 7y and T
sets. The Trnp sets found one error (5%) more than the T, sets.

opera
we created

7 Conclusions

This work addressed the application of Mutation Analysis for testing Prolo

cribed a supporting tool.
utation operators, based on Prolog characteristic

he programs. As illustrated in Section 4, the oper-
he faults described, as well as their combinatior
operators and supports the practical applicatio
MutProlog generates and executes the mutant
btained for a given test data set.

programs and to reduc

programs and des

We introduced a set of m
and on typical faults found in t
ators allow the discovering of t

A tool that implements the
of the criterion was described.
automatically, and calculate the coverage o
use of MutProlog can ease the development of Prolog

the cost of the testing activity.
The results of the experiment accomplished are very promising and sho

the applicability of the mutant operators proposed. The percentage of generate

Applying Mutation Testing in Prolog Programs 9!

Table 4. Strenght Results

MutProlog X All-Branches[All-Branches X MutProlog
Program|Test data| Control Flow. |Test Data| MutProlog
Coverage Coverage
elem_rep 1 100% 1 79.8%
num.ap 1 100% 1 93,75%
ord_sel 1 100% 1 92,5%
meryge 3 100% 3 97,07%
Total 6 100% 6 90,25%

Table 5. Number of Faults Revealed by the Test Sets

Program|Faults{Revealed faults|Revealed faults
Tb Tmp
elem_rep| 5 4 (80%) 5 (100%)
num.ap | 5 5 (100%) 5 (100%)
ord_sel 5 4 (100%) 4 (80%)
merge 5 5 (60%) 5 (100%)
Total 20 18 (90%) 19 (95%)

and equivalent mutants is lower than for traditional programs, because Prolog
programs are usually smaller.

When compared with structural testing, the results are similar to traditional
programs. Mutation testing requires a greater number of test data than the all-
branches criterion. The strength results show that to satisfy the mutant criterion
is harder than the structural criterion. We have a greater probability of satisfying
all-branches criterion if the mutant criterion was satisfied.

The results also indicate a greater efficacy but new studies should be con-
ducted. This is only a preliminary work. The set of operators herein introduced
should be better investigated. New operators should be proposed, mainly to help
the inter-clause testing. These operators can be proposed based on the concept
of interface mutation applied to integration testing [8].

In a second step, we intend to accomplish an experiment to investigate es-
sential operators for Prolog. Sets of operators could be established according to
some aspects and kind of application related to the program being tested. This
has been successfully done in conventional programs for decreasing costs.

Some improvements in MutProlog are necessary, such as, the development of
a graphical interface and mechanisms to help the tester in the identification of
equivalent mutants and in the automatic generation of test data.

References

1. D. Baldwin and F. Sayward. Heuristics for Determining Equivalence of Program
Mutations. CT, Res.Rep. 276, Department of Computer Science - Yale University,
New Haven, 1979.

2. F. Bergadano and D. Gunetti. Inductive Logic Programming: From Machine Learn-
ing to Software Engineering. The MIT Press, 1996.

92

3.

10.

11.

12.

13.

14.

15.

16.

17,

18.
19.

20.

Toaldo J., Vergilio S.

P. Boeck and B. Charlier. Static type analysis of prolog procedures for ensur-
ing correctness. In International Workshop PLILP, pages 223-237. Spring-Verlag,
Lectures Notes in Computer Science, 456, 1990.

N. Choquet. Test data generation using a prolog with constraints. In Proc. of the
Workshop on Software Testing, pages 132-141. Computer Science Press, Banff
Canada, July 1986.

W.M. Craft. Detecting Equivalents Mutants Using Compiler Optimization. Master
Thesis, Department of Computer Science, Clemson University, Clemson-SC, 1989.
R.A. De Millo, D.C. Gwind, and K.N. King. An extented overview of the mothra
software testing environment. In Proc. of the Second Workshop on Software Test-
ing, Verification and Analysis, pages 142-151. Computer Science Press, Banff
Canada, July 19-21 1988.

R.A. De Millo, R.J. Lipton, and F.G. Sayward. Hints on test data selection: Help
for the practicing programmer. IEEE Computer, Vol. C-11:34—41, April 1978.

M. E. Delamaro and et al. Integration testing using interface mutation. In VI
International Symposium of Software Reliability Engineering (ISSRE), pages 112-
121. IEEE Computer Society Press, New York, NY, November 1996.

M. E. Delamaro and J.C. Maldonado. A tool for the assesment fo test adequacy
for ¢ programs. In Proceedings of the Conference on Performability in Compuling
Systemns, pages 79-95. East Brunswick, New Jersey, USA, July 1996.

R. Dennecy. Test case generation form prolog-based specifications. IEEE Software,
pages 49-57, March 1991.

M.C.F.P. Emer and S.R. Vergilio. Selection and evaluation of test data sets based
on genetic programming. Software Quality Journal, pages 167-186, June 2003.
F.G. Frankl and E.J. Weyuker. Data flow testing in the presence of unexecutable
paths. In Proceedings of the Workshop on Software Testing, pages 4-13. Computer
Science Press, Banff - Canada, July 1986. .

M.M. Gorlick, C.F. Kesselman, D.A. Marotta, and S Parker. Mockingbird:
logical methodology for testing. Journal of Logic Programming, (8):95-1 19, 1990.
D. Hoffman and P. Strooper. Automated module testing in prolog. iEEE Trans-
actions on Software Engineering, 17(9):934-943, 1991.

G.B. Luo, B. Sarikaya, and M. Boyer. Control-flow based testing of prolog pro-
grams. pages 104-113, March 1992. .
A.P Mathur and W.E. Wong. An empirical comparison of data flow and mqtatlon
based test adequacy criteria. The Journal of Software Testing, Verification
Reliability, Vol. 4(1):9-31, March 1994.)
L.M. Pereira. Rational debugging in logic programming. In Third International
Conference on Logic Programming, pages 203-210. Lectures Notes on Computer
Science, 1986. . .
L. Plumer. Termination proofs for logic programs. In Lectures Notes in Artificial
Intelligence. Spring-Verlag, 1990. .

S. Rapps and E.J. Weyuker. Selecting software test data using data flow u_lforma-
tion. /IEEE Transactions on Software Engineering, SE-11(4):367-375, April 1985.
W.E. Wong. On Mutation and Data Flow. PhD Thesis, Department of Computer
Science, Purdue University, West Lafayette-IN, USA, December 1993.

